JAMES COOK LEARNING TRUST

Year 2

Maths Curriculum

KNOW IT!
TEACH IT!
APPLY IT!

Key Objectives

- Count in steps of 2,3 and 5 from 0 and in 10 s from any number forwards and backwards.
- Count to and across 100 forwards and backwards beginning with 0 or 1 or from any given number.
- Count in multiples of two, fives and tens.
- Given a number, identify one more and one less.
- Recognise the place value of each digit in a two-digit number (10s and 1s).
- Count, read and write numbers to 100 in numerals.
- Compare and order numbers from 0 up to 100 using >, < and $=$ signs.
- Use the language of equal to, more than, less than, most and least.
- Read and write numbers to at least 100 in numerals and words.
- Read and write numbers from 1 to 20 in numerals and words.
- Identify, represent and estimate numbers using different representations, including the number line.
Dienes

- Identify and represent numbers using objects and pictorial representations, including the number line.

Possible Steps To Success

Count in steps of 2, 3 and 5 from 0 ...
\Rightarrow Count forwards to 100 in 1s.
\Rightarrow Count back from 100 in 1 s .
\Rightarrow Count in steps of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s from 0 .
\Rightarrow Count in steps of 10 from any number.
\Rightarrow Count in steps of 3 using concrete and pictorial representations
\Rightarrow Count forwards and backwards in steps of 3.
Recognise the place value of each digit...
\Rightarrow Read numbers to 100
\Rightarrow Partition 2-digit numbers using concrete representations into 10 s and 1 s .
\Rightarrow Partition 2-digit numbers using pictorial representations into 10s and 1s (part whole models and place value charts).

Compare and order numbers from 0 up to 100 using...

\Rightarrow Use the language of greater than, less than, equal to, smallest and greatest.
\Rightarrow Know signs >, < and =
\Rightarrow Use signs to compare two sets of concrete materials.
\Rightarrow Use signs to compare two pictorial representations.
\Rightarrow Use signs to compare two numbers.
\Rightarrow Order objects from smallest to greatest and vice-versa.
\Rightarrow Order numbers from smallest to greatest and vice-versa
Identify, represent and estimate numbers using different

representations..

\Rightarrow Count objects to 100.
\Rightarrow Represent numbers to 100 using a range of concrete materials.
\Rightarrow Represent numbers to 100 using images.
\Rightarrow Represent numbers to 100 using numerals and words.

Stem Sentences

- 'There are ten ones in a ten.'
- "There are one hundred ones in a hundred.'
- 'There are ten tens in a hundred.'
- '98 is 98 ones.'
' 98 is 9 tens and 8 ones.
- 'Zero is the digit 0 , which stands for no amount.'
- 'The widest part of the < and $>$ sign always points to the larger number.'

Key Terminology

- Represent

- Representation
- Value
- Sequence
- Identify
- Estimate/Approximate
- Compare
- Order
- Sign
- Smallest
- Greatest
- Forwards
- Backwards

COMMON MISCONCEPTIONS

Key Vocabulary

- Not knowing to use 0 as a place holder when a column is empty.
- Knowing which of the symbols <,> means greater than and which less than.
- Not knowing the value of a digit e.g. ' 7 in 78 is worth 7 .' instead of ‘ 7 in 79 is worth 70 '.
- Thinking that numbers ending in 3 are multiples of 3 .
- Inaccurate counting when crossing 10 s boundaries e.g. 72, 71, 70, 79...
\Rightarrow Digit-written numeral from 0-9 that forms part of a number
\Rightarrow Partition- separating into parts.
\Rightarrow Multiple- product of one number multiplied by another number
\Rightarrow > means 'greater than' and < means 'less than' and = means 'equal to'
\Rightarrow Numeral-a symbol or a group of symbols you use to show a number.

Key Objectives	Possible Steps To Success	Stem Sentences	Key
- Recall and use addition and subtraction facts to 20 fluently and derive and use related facts to 100.	Recall and use addition and subtraction facts... \Rightarrow Rapid recall of number bonds to 20. \Rightarrow Make links between practical calculations where the ones can be used to represent the tens e.g.	- 'I know that $5+4=9$ so I now that 5 tens +4 tens $=9$ tens so 1 know that $50+40=90$.'	- Mental - Calculate - Calculation - Add
- Represent and use number bonds and related subtraction facts within 20.	100	- I know that $8-6=2$ so 1 know that 8 tens -6 tens $=2$ tens so 1 know that 80 -	- Add - Addition - Sum
- Add and subtract numbers using concrete objects, pictorial representation and mentally including: - 2 digits and ones - 2 digits and tens - two, 2 digit numbers - three, 1 digit numbers.	Add and subtract numbers using concrete... a 2-digit number and ones \Rightarrow add and subtract ones without bridging 10; \Rightarrow add and subtract ones with bridging (use a number line to count on in ones from the larger number).	$60=20 .{ }^{\prime}$ - If the total of the ones column is equal to 10 or more then I must exchange.' - 'Addition can be done in any order.'	- Total - Plus - Altogether - Subtract - Subtraction - Difference
- Add and subtract one-digit and two-digit n 20, including zero.	\Rightarrow use number bonds to add and subtract more efficiently when bridging through tens e.g. $17+5=17+3+2$ and $22-7=$ 22-2-5.	- 'Subtraction cannot be done in any order.' - 'When adding or subtracting tens, the ones digit remains the same.'	- Fewer - Less - More - Greater - Takeaway - Minus - Number bond
- Show that the addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. - Recognise and use the inverse relationship between addition and subtraction and use this to check calculations.	a 2-digit number and tens \Rightarrow add and subtract 10 using concrete materials. \Rightarrow add and subtract 10 using 100 square, recognising how the ten digit changes. \Rightarrow add and subtract multiples of ten using concrete, then pictorial, then abstract methods. Two, 2-digit numbers \Rightarrow add two 2-digit numbers using concrete materials in a place value chart without \& then with an exchange.		
- Use concrete objects and pictorial representations to solve missing number problems e.g. $7=\square-9$	\Rightarrow Add two 2-digit numbers using numerals (in columns and number sentences). \Rightarrow Follow the above steps for subtracting two 2-digit numbers.		
	\Rightarrow Use number bonds when adding three 1-digit e.g. $3+5+7=3+7+5$.numbers.		

COMMON MISCONCEPTIONS

- Re-ordering a subtraction statement so you always take away from the greater digit instead of exchanging e.g.

$$
\begin{array}{rl}
35 & 5-8 \text { becomes } \\
-\quad 18 & 8-5
\end{array}
$$

- Lining up columns correctly especially in terms of 2 digit - 1 digit etc
- Knowledge of what 46-12 actually means e.g. 4-1 is actually 40-1

Key Vocabulary

\Rightarrow Efficient-the quickest way to solve a calculation.
\Rightarrow Partition- splitting up a number into smaller numbers.
\Rightarrow Column-an arrangement of objects or numbers in a vertical line, side by side.
\Rightarrow Row-an arrangement of objects or numbers in a horizontal line, side by side.

COMMON MISCONCEPTIONS

Key Vocabulary

- Equal parts have to look the same (but they do not) e.g.

\Rightarrow Fraction -an equal part of something.
\Rightarrow Third - one of three equal parts.

Key Objectives

- Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass $(\mathrm{kg} / \mathrm{g})$; temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity ($1 / \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels.
- Measure and begin to record the following: lengths and heights; mass and weight; capacity and volume and timehours, minutes and seconds.
- Compare and order lengths, mass, volume/capacity and record the results using $<,>$, or $=$.
- Compare, describe and solve practical problems for length and heights; mass and weight; capacity and volume and time.
- Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value
- Find different combinations of coins that equal the same amounts of money
- Recognise and know the value of different denominations of coins and notes.
- Compare and sequence intervals of time
- Sequence events in chronological order using language
- Recognise and use the language relating to dates, including days of the week, weeks, months and years.
- Tell and write the time to five minutes including quarter past/to the hour and draw the hands on a clock face to show these times.
- Know the number of minutes in an hour and the number of hours in a day
- Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.

Possible Teaching Sequence

Length \& Height

\Rightarrow Measure a variety of objects using a ruler, tape measure or metre stick-practical then reading scales on images.
\Rightarrow Compare length of 2 objects and order more than 2 lengths.

Mass \& Weigh

\Rightarrow Compare mass of different objects using balance scales.
\Rightarrow Use grams/kilogram weights to measure mass of objects on a balance scale.
\Rightarrow Weigh objects on standard weighing scales and record mass of objects represented pictorially.

Volume \& Capacity

\Rightarrow Practically investigate volume and capacity using a variety of containers
\Rightarrow Explore a variety of cylinders and jugs to measure in ml and I .
\Rightarrow Compare volume and capacity of different containers-move from concrete to visual representations.

Temperature

\Rightarrow Use thermometers to measure temperatures at different times and places around school.
\Rightarrow Compare temperatures practically and those represented visually.

Money

\Rightarrow Know value of coins and find totals of sets of coins-all the same and then combinations.
\Rightarrow Know value of notes $£ 5, £ 10$ and $£ 20$ and find totals of notes-all the same and then combinations.
\Rightarrow Find totals of notes and coins.
\Rightarrow Select coins to make an amount (practically, pictorially \& abstract.
\Rightarrow Explore different ways of making the same amount \& compare 2 different values of coins and/or notes.
\Rightarrow Add amounts of money and find the difference between two amounts.
\Rightarrow Find change from given amounts.
Time
\Rightarrow Read and write times to the hour and half past.
\Rightarrow Read and draw times 'quarter to' and 'quarter past'.
\Rightarrow Read and show time to 5 minute intervals.
\Rightarrow Convert a time in minutes to hours and minutes e.g. 68 minutes $=1$ hour $\& 8 \mathrm{~min}$ \Rightarrow Calculate duration of an event when given start and end times.

Stem Sentences

- 'There are 24 hours in 1 day.'
- "There are 60 minutes in 1 hour.'
- 'There are 100 p in $£ 1$.'
- 'Capacity is the amount a container can hold.'
- 'Volume is the amount of space occupied by an object.'

Key Terminology

- Half
- Quarter
- Three quarters
- Less
- More
- Most
- Least
- Amount
- Change
- Difference
- Measure
- Measurement
- Length
- Height
- Temperature
- Thermometer
- Compare
- Order
- Longer/est
- Shorter/est
- Taller/est
- Heaviest
- Lightest
- Hour
- Minute
- Clock
- Seconds
- Hands
- Past
- To

COMMON MISCONCEPTIONS

- Not knowing that after half past, we start to read time 'to' the next hour; instead children will read 25 to as 35 minutes past etc.
- Always showing the hour hand at the number in the time instead of showing it accurately e.g. at the 2 for $2: 30 \mathrm{p} . \mathrm{m}$. instead of $1 / 2$ way between 2 and 3 .
- Thinking that 105 minutes $=1$ hour and 5 minutes.
- Measuring objects starting at the end of the ruler instead of 0 .
- A larger coin means it's worth more
- The tallest container has the largest capacity.

Key Vocabulary

\Rightarrow Capacity -the amount a container or object can hold, (measured in ml / l).
\Rightarrow Volume-amount of space occupied by an object (measured in cm^{3}).
\Rightarrow Scale- lines on measuring instruments that identify the measurement.
\Rightarrow Mass- the amount of matter or substance that makes up an object.

STEM SENTENCES

- 'Half turn means you or the object will face the opposite way.'
- 'If something is symmetrical it can be divided into 2 matching half shapes.'
- '2D shapes have sides and corners/ vertices '
- '3D shapes have faces, edges and vertices.'
- 'A side is the line between 2 vertices.'
- 'A corner/vertex is the point where 2 sides meet.'
- 'An edge is where 2 faces meet.'
- 'A vertex is where 2 or more edges meet.'
- 'If something moves clockwise it goes around to the right, like the hands of a clock.'
- 'If something moves anticlockwise it goes around to the left.'

Key Terminology

- Pentagon
- Hexagon
- Octagon
- Prism
- Side
- Corner/vertex
- Face
- Edge
- Vertex/vertices
- Property
- Sort
- Flat
- Curved
- Straight
- Orientation
- Forwards
- Backwards
- Up, down, left, right
- Direction
- Movement
- Turn
- Clockwise/
anticlockwise
- Repeat
- Continue

COMMON MISCONCEPTIONS

Key Vocabulary

- Thinking that a square is no longer a square if it has been rotated.
- Not knowing that irregular six-sided shapes are still hexagons, five-sided shapes are still pentagons etc For example, knowing that this is a pentagon
but thinking this is not

- Only recognising the properties of 3D shapes that can be seen and counted in visual representations i.e. only counting the faces they can see in an image.
\Rightarrow Line of symmetry-a line that cuts a shape/pattern in half so that both sides match exactly.
\Rightarrow Pattern-a sequence that repeats.
\Rightarrow Rotate- to turn something around a given point.
\Rightarrow Side-the line between 2 vertices.
\Rightarrow Vertex- the point at which 2 or more edges meet
\Rightarrow Edge-where two faces meet.
\Rightarrow Corner
\Rightarrow Face

Key Objectives

- Interpret and construct simple pictograms, tally charts, block diagrams and simple tables.
- Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity.
- Ask and answer questions about totalling and comparing categorical data.

Possible Teaching Sequence

Interpret and construct simple pictograms, tally charts,

 block diagrams and simple tables.\Rightarrow Construct tally charts- linking to the wider curriculum where possible.
\Rightarrow Complete tally charts with missing tallies or totals.
\Rightarrow Interpret tally charts-answering questions.
\Rightarrow Build pictograms using concrete apparatus-both horizontally and vertically.
\Rightarrow Create pictograms, using data from tallies, by drawing own pictures.
\Rightarrow Complete missing columns or rows within pictogram.
\Rightarrow Interpret and answer questions about data presented in a pictogram, including comparison of categories.
\Rightarrow Draw pictograms where symbols represent 2,5 or 10 items.
\Rightarrow Build block diagrams using cubes.
\Rightarrow Draw block diagrams using number line knowledge for scale.
\Rightarrow Interpret block diagrams-answering questions.

Stem Sentences Key Terminology

- 'Each symbol represents $\underline{2}$ so half a symbol represents 1.'
- Total
- Altogether
- More
- Less
- Difference
- Complete
- Construct
- Horizontal
- Vertical
- Block diagram
- Column
- Row
- Represent
- Interpret
- Symbol
- Scale
- Key
- Tally chart
- Table
- Axis
- Category
- Compare
- Same

COMMON MISCONCEPTIONS

- Ignoring key

as 3 instead of 6 oras $1 / 2$ instead of.
- Interpreting 'How many more...' as an addition or scale reading exercise, instead of as subtraction.

Key Vocabulary

\Rightarrow Tally-a mark use for counting results OR a way of keeping count by drawing marks.
\Rightarrow Pictogram-use of pictures or symbols to present information.
\Rightarrow Block diagram-a graph using blocks to show quantities or numbers.

PROBLEM-SOLVING AND REASONING SHOULD BE APPLIED THROUGHOUT ALL TEACHING NOT JUST WITHIN ISOLATED LESSONS.

PROBLEM-SOLVING AND REASONING.

PROBLEM-SOLVING AND REASONING EXAMPLES FOR YEAR 2

The following strategies are a very powerful way of developing pupils' problem-solving and reasoning skills and can be used flexibly across all strands of maths.

Spot the mistake/Which is different?
 True or false?

What comes next?
Do, then explain.
Make up an example/Write more statements/ Create a question/Another and another.
Possible answers/other possibilities.
Missing numbers/Missing symbols/Missing information.
Working backwards/Use of inverse/Undoing/ Unpicking.
Hard and easy questions/Order from easiest to hardest.
What else do you know?/Use a fact.
Fact families.
Convince me/Prove it/Generalising/Explain thinking
Connected calculations.
Make an estimate/Size of an answer.
Always, sometimes, never.
Making links/Application.
Can you find?
Odd one out.
Complete/continue the pattern.
Ordering.
The answer is...
Visualising
Answer free zone.
Justify.

