JAMES COOK LEARNING TRUST

Year 5

Maths Curriculum

KNOW IT!
TEACH IT!
APPLY IT!

PLACE VALUE

Year 5

MEASURES

Area of a rectangle $=1 \times w$
Perimeter of a rectangle $=(2 \times I)+(2 \times w)$
$1000 \mathrm{ml}=11$

1 litre $=1.75$ pints
inch $=2.5 \mathrm{~cm} ; 1$ foot $=12$ inches
$1 \mathrm{~kg}=2.2 \mathrm{lb}$
$1000 \mathrm{~m}=1 \mathrm{~km}$

Key Objectives

- Read, write, order and compare numbers to at least $1,000,000$ and determine the value of each digit.
- Read, write, order and compare numbers beyond 1000.
- Recognise the place value of each digit in a 4 digit number.
- Count forwards or backwards in steps of power of 10 for any given number up to $1,000,000$.
- Count in multiples of $6,7,9,25$ \& 1000.
- Find 1000 more/less than a given number.
- Round any number up to $1,000,000$ to the nearest 10 , $100,1000,10,000$ and 100,000.
- Round any number to the nearest 10,100 or 1000.
- Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero.
- Count backwards through 0 to include negative numbers.
- Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.
- Read Roman numerals to 100 (I to C).

COMMON MISCONCEPTIONS

- Saying digits instead of reading a number e.g. reading 56,078 as $5,6,0,7,8$ rather than 56 thousands and seventy eight.
- Reading thousands digits as a hundreds number e.g. 2, 432, 107 ‘ 432 ' instead of 432 thousands.
- Dropping the digits prior to the value you are rounding e.g. round 123,456 to the nearest 1000 , pupil gives answer of 3000 .
- Looking at the wrong column when rounding e.g. looking at 10,000 column when rounding to the nearest 10,000 .

Read, write, order and compare...
\Rightarrow Know the value of TTh, HTh and M
\Rightarrow Read and write up to 7 digit numbers and estimate their position on a blank number line.
\Rightarrow Partition in different combinations e.g. $1,256,000$ is equal to 12 HTh and 56 thousands.
\Rightarrow Use <, >, = signs.
\Rightarrow Order a given set of numbers-could include Roman numerals in list. Count forwards and backwards...
\Rightarrow Recognise powers of 10 and associate with place value columns.
\Rightarrow Count in steps of powers of 10 from a multiple of 10; count from any given multiple.
\Rightarrow Bridge TTh, HTh and M.
Round any number up to $1,000,000$...
\Rightarrow Identify the digit within the number rounding to.
\Rightarrow Recognise position of number in relation to power of 10 either side and place on number line
\Rightarrow Determine which multiple the number is closest to and round to given multiple.
\Rightarrow Spot patterns and apply when rounding e.g. 4 or below, round down. Interpret negative numbers...
\Rightarrow Understand the concept of zero and the concept of negative numbers in context e.g. temperature, money overdrafts etc
\Rightarrow Count backwards/forwards crossing zero in different steps e.g. 1, 5, 10, 100 etc
\Rightarrow Use negative symbol and terminology e.g. negative 4 not minus 4
\Rightarrow Estimate where negative numbers come on a number line.

Read Roman numerals..

\Rightarrow Introduce Roman numeral M and D.
\Rightarrow Know the rules of reading Roman numerals.

Stem Sentences

- 'There are ten thousands in a ten thousand.'
- 'There are ten, ten thousands in a hundred thousand.
- 'There are ten hundred thousands in a million.'
- ' $4,321,000$ is 4 millions and 321 thousands;

4,321,000 is 43 hundred thousands and $\underline{21}$ thousands etc.'

- When rounding to the nearest \qquad , if the \qquad digit is 4 or less, round down. If the
\qquad digit is 5 or more than

round up.'

Key Terminology

- Represent
- Representation
- Value
- Sequence
- Identify
- Estimate/ Approximate
- Ten thousands (see STEM sentence)
- Hundred thousands
- Millions
- Roman Numerals
- Digit
- Partition
- Inequality symbol
- Ascending
- Descending

Key Vocabulary

\Rightarrow Round-giving a number a nearby value when you don't need it to be exact.
\Rightarrow Negative number - any number less than zero written with a negative sign.
\Rightarrow Positive number- any number greater than zero.
\Rightarrow Multiple- product of one number multiplied by another number.
\Rightarrow Power of $\mathbf{1 0}$-ten multiplied by itself a certain number of times.

Key Objectives

- Add and subtract numbers mentally with increasingly large numbers.
- Add, subtract numbers mentally including:
- 4 digit number and ones
- 4 digit number and tens
- 4 digit number and hundreds.
- Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).
- Add and subtract numbers with up to 4 digits using formal written methods of columnar addition and subtraction.
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Add and subtract mentally including...
\Rightarrow Count forwards and backwards in ones, tens, thousands, tens of thousands and hundreds of thousands.
\Rightarrow Know the place value of numbers up to 1 million.
\Rightarrow Use place value to add and subtract multiples of $10,100,1,000,10,000$, 100,000 and 1 without bridging. Moving onto including bridging.
\Rightarrow Use knowledge of number bonds to help them bridge.
\Rightarrow Use rounding and adjusting to add numbers close to multiples of 10
\Rightarrow Use visual aids such as number lines and jottings to help them keep track of their calculations
Add and subtract numbers with more than 4 digits...
\Rightarrow Read and write numbers up to 1 million.
\Rightarrow Use knowledge of place value to line the numbers accurately (up to 1 million)
\Rightarrow Use a range of manipulatives to demonstrate their understanding, including pictorial representations
\Rightarrow Add/subtract numbers up to 6 digits with no regrouping/exchanging
\Rightarrow Add/subtract numbers up to 6 digits with one regroup/ exchange.
\Rightarrow Add/subtract numbers up to 6 digits with more than one exchange. \Rightarrow Know '0' as a place holder
For above addition \& subtraction also refer to Calculation Policy. Use rounding to check...See Place Value for Rounding Guidance.
\Rightarrow Round to the nearest $10,100,1000,10,000$, and 100,000 .
\Rightarrow Use knowledge of rounding to estimate and give approximate answers.

- 'I know that 6 hundreds +7
hundreds 13 hundreds/ 1300 so I know that 6 thousands +7 thousands $=13$ thousands $/ 13,000$.'
- 'I know that $13-6=7$ so 1 know that 130-60 $=70$ and 1300 $600=700$.'
- 'For calculations that involve both + and - steps, we can + then-or-then + ; the final answer is the same.'
- 'In column addition/subtraction, we start at the right hand side.'
- 'If the column sum is equal to 10 or more then we must regroup.
- 'Subtraction cannot be done in any order.'
- 'When using column subtraction, if the digit on the top is lower in value than that of the digit on the bottom then exchange.'
- Mental
- Efficient
- Calculate
- Calculation
- Partition
- Add
- Addition
- Sum
- Total
- Plus
- Altogether
- Subtract
- Difference
- Fewer
- Less
- Takeaway
- Minus
- More
- Combined
- Column
- Row
- Exchange
- Regroup

COMMON MISCONCEPTIONS

- Children may be unsure which number to place on top of the calculation and why this matters. For example: 3,454-3,212. Some children may place the smallest number on top and therefore complete the calculation incorrectly.
- Failing to understand place value in a calculation.
- Inaccurate application of number bonds when calculating mentally e.g. 4000-570=3530.

	Th	\mathbf{H}	\mathbf{T}	\mathbf{O}
	3	6	2	9
	7	8	3	
+				

- Using formal written methods for every calculation rather than choosing the most efficient method.

Key Vocabulary

\Rightarrow Approximate: an estimation of an answer or rounding a number to its nearest place value.
\Rightarrow Commutative law: In addition and multiplication, numbers can be added or multiplied in any order.
\Rightarrow Multi-step: mathematical problems that require more than one operation

Key Objectives

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers.
- Recognise and use factor pairs and commutativity in mental calculations e.g. $7 \times 6=7 \times 3 \times 2$.
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- Establish whether a number up to 100 is prime and recal prime numbers up to 19
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers.
- Use the distributive law to multiply 2 digit numbers by 1 digit.
- Multiply two digit and 3 digit numbers by a one digit
- Multiply and divide numbers mentally, drawing upon known facts.
- Recall multiplication and division facts from multiplication tables up to 12×12
- Use place value, known and derived facts to multiply and divide mentally including, multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers.
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000
- Recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed $\left({ }^{3}\right)$

Possible TeAching Sequence

Identify multiples and factors..

\Rightarrow Continue to embed rapid recall of times tables and related division facts
\Rightarrow Use the vocabulary factor, multiple and product and identify all the factors of a given number e.g. the factors of 20 are $1,2,4,5,10$ and 20.
\Rightarrow Identify factors systematically so that none are missed out.
Know and use the vocabulary of prime numbers.... Establish..
\Rightarrow Recognise that numbers with only 2 factors are prime numbers \& apply knowledge of multiples and divisibility tests to identify the prime numbers less than 100.
\Rightarrow Understand that 73 children can only be organised as 1 group of 73 or 73 groups of 1 , whereas 44 children could be organised as 1 group of 44,2 groups of 22,4 groups of 11,11 groups of 4 etc.
\Rightarrow Explore the pattern of primes on a 100 -square, explaining why there will never be a prime number in the tenth column and the fourth column.

Multiply numbers up to 4 -digits..

\Rightarrow Develop and refine written methods for multiplication. Moving from expanded layouts (such as the grid method) towards a compact layout for HTO $\times \mathrm{O}$ and TO \times TO calculations.
\Rightarrow Approximate answer before starting a calculation and use this to check answer sounds sensible e.g. 56×27 is approximately $60 \times 30=1800$.

Multiply and divide numbers mentally...

\Rightarrow Rehearse multiplication facts and use these to derive division facts, to find factors of two-digit numbers and to multiply multiples of 10 and 100, e.g. $40 \times$ 50.
\Rightarrow Use factors to work out a calculation such as 16×6 by thinking of it as $16 \times 2 \times 3$, \Rightarrow Use strategies such as round and adjust e.g. 39×20 calculate 40×20 then subtract 20 and doubling and halving e.g. $3.5 \times 12=7 \times 6$.

Divide numbers up to 4 digits by..

\Rightarrow Extend written methods for division to include $\mathrm{HTO} \div \mathrm{O}$, including calculations with remainders. Increase efficiency of methods used: see calculation policy Recognise and use square and cube numbers...
\Rightarrow Use knowledge of multiplication facts to derive quickly squares of numbers to 12 $\times 12$ and the corresponding squares of multiples of 10 .

Stem Sentences

- 'For every group of 10 , there are 2 groups of five.
- 'If I double one factor, I must halve the other factor for the product to stay the same.'
- 'If I multiply one factor by two, must halve the other factor for the product to stay the same.
- 'If I multiply the dividend by __, I must multiply the divisor by __for the quotient to stay the same.'
- 'If I divide the dividend by 2 , I must divide the divisor by 2 for the quotient to stay the same.'
- ' 1 is a factor of all positive integers.'
- 'Every positive integer is a factor of itself.'
- 'The smallest factor of a positive number is always 1
- 'The largest factor of a positive integer is always itself.'
- 'Numbers that have more than two factors are composite numbers.
- If you change the order of factors, the product always remains the same.
- When a number is divided by 10 , the digits move one place to the right.
- When a number is multiplied by 10 , the digits move one place to the left.

COMMON MISCONCEPTIONS

- Just adding a zero when multiplying by powers of 10. Making reference to decimal numbers where this 'cheat' does not work, i.e. $0.7 \times 10=7$ not 0.70
- Not using a 'place holder' when multiplying by a 2 digit number.
- Confusing a multiple and a factor
- When finding the product of a squared number $\left({ }^{2}\right)$, children may ' x ' the number by 2 and not by itself.
- When finding the product of a cubed number $\left({ }^{3}\right)$, children may ' x ' the number by 3 and not by itself and itself again.

PATTERNS

- Please refer to the Y3 and Y4 curriculum for multiplication patterns.

Key Vocabulary

\Rightarrow Multiple-the product of one number x by another.
\Rightarrow Factor-a whole number that divides exactly into another.
\Rightarrow Prime number: a number divisible by only 2 factors: 1 and itself.
\Rightarrow Composite number: has factors in addition to 1 and itself
\Rightarrow The number that is divided is called the dividend and the number which the dividend is being divided by is the divisor The answer to a division problem is the quotient
\Rightarrow Integer: a whole number.
\Rightarrow Squared number $\left(^{2}\right)$: the product of a number x by itself.

Key Objectives

possible Teaching Sequence

Identify, name... Compare and order...
\Rightarrow Explore visual representations of equivalent fractions, linking to common factors and multiples.
\Rightarrow Apply knowledge of equivalent fractions to ensure a given set of values all have the same denominator
\Rightarrow Compare and order fractions in ascending and descending order and using <, > and $=$.
\Rightarrow Count up and down in fraction steps, including mixed numbers e.g. $1,1 \frac{1}{2}, 2,2^{1 / 2}$.

Recognise mixed..
\Rightarrow Building on prior learning that equivalent numerators and denominators equal a whole, recognise proper and improper fractions.
\Rightarrow Use bar models to show how many parts are in an improper fraction/mixed number and use to convert between two, recording as mathematical statements.

Add and subtract..

\Rightarrow Use equivalence to convert denominators to the same multiple
\Rightarrow Recognise we subtract/add parts (numerator) that we have, writing answer as a mixed number.

Multiply proper fractions...

\Rightarrow Recognise multiplication sentence as repeated addition and represent this visually, counting number of parts that result.
\Rightarrow Extend this to mixed numbers, multiplying wholes and parts separately and then totalling at the end
Read and write decimals...Recognise and use thousandths...
\Rightarrow Recognise a decimal as a fraction of a whole.
\Rightarrow Recognise value of t, h, th in relation to diving a whole by 10 , 100, 1000.
\Rightarrow Link knowledge of fractions to decimals e.g. $23 \div 1000={ }^{23} / 100=$ 0.023 .

Read, write, order...
\Rightarrow Recognise the value of t , h , th in relation to a whole through use of visual representations and apply knowledge to comparing.
\Rightarrow Recognise what 2 or 3 decimal places means.

Round decimals...

\Rightarrow Recognise which whole or tenth are either side of the decimal being rounded and place decimal in relation to these on a number line, recognising which value it is closer to.
Recognise percent...Know percentage...
\Rightarrow Know and understand \% symbol, linking to place value knowledge of decimal t , h and fractions out of 100 .
\Rightarrow Use knowledge to convert between F, D and P.
\Rightarrow Use equivalence to convert common fractions to out of 100 and changes these to decimals and percentages.

Stem Sentences

Key Terminology

- 'When adding/subtracting fractions, check that the denominators are the same, then add/subtract the parts.
- 'To find an equivalent fraction, you must multiply/divide both the numerator and denominator in the same way.'
- 'When comparing fractions with the same denominators, the greater the numerator, the greater the fraction.
- 'If numerators are the same, the greater the denominator, the smaller the fraction.'
- 'I know that / 1000 is the same as $\div 1000$.'
- ' 1 whole is a thousand, thousandths.

- Fraction

- Tenths
- Hundredths
- Thousandths
- Equal
- Part
- Equivalent
- Whole
- Factors
- Multiples
- Decimal point
- Improper fraction
- Decimal
- Numerator
- Denominator

COMMON MISCONCEPTIONS

- Not fully understanding that a whole can be made up of parts, such as in the context of mixed numbers.
- Only converting denominators and not numerators or vice-versa
- Adding/subtracting the denominators e.g $3 / 4+5 / 8={ }^{8} / 12$
- Multiplying both numerator and denominator by a whole e.g. $1 / 2 \mathrm{x}$ $3=3 / 6$
- Reading a decimal as zero point three hundred and 24 instead of zero point three two four.
- Thinking a thousandth is greater than a tenth e.g. $0.1<0.009$.

Key Vocabulary

\Rightarrow Mixed number - a number made up of a whole number and a fraction.
\Rightarrow Percent/Percentage - a part out of a hundred
\Rightarrow Decimal place -the position of a digit to the right of the decimal point.
\Rightarrow Proper fraction - a fraction where the numerator is less than the denominator.
\Rightarrow Improper fraction - a fraction where the numerator is greater than the denominator; a fraction larger than a whole.

Key Objectives

Possible Teaching Sequence

Stem Sentences

Key Terminology

- Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre).
- Convert between different units of measure e.g. km to $\mathrm{m} /$ hours to minutes.
- Estimate, compare and calculate different measures including money in pounds and pence.
- Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.
- Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres.
- Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes.
- Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.
- Find the area of rectilinear shapes by counting squares.
- Estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water].
- Solve problems involving converting between units of time.
- Read, write and convert time between analogue and digital 12- and 24-hour clocks .
- Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.

Convert between different units of measure..

\Rightarrow Throughout use practical equipment and take measurements themselves
\Rightarrow Identify what kilo means
\Rightarrow Convert from km to m and kg to g and vice versa. Use dividing and x by 1000
\Rightarrow Convert fractions of km to m
\Rightarrow Use bar models and double number lines to visualise conversions
\Rightarrow Compare m with km etc.
\Rightarrow Milli means 1000 . Repeat above for mm to m and ml to I and vice versa \Rightarrow Repeat for cm and m
Understand and use approximate equivalences between metric...
\Rightarrow Physically use the measurements in the classroom alongside metric units
\Rightarrow Use given stem sentences to compare measurements given in diff units
\Rightarrow Use bar models to help with conversions.

Measure and calculate the perimeter..

\Rightarrow Measure perimeter of rectangles without grids - accurate use of ruler
\Rightarrow Measure perimeter of rectilinear (compound) shapes - accurate use of ruler
\Rightarrow Encourage marking off of sides as they add them up to prevent repetition of counting or omission of sides
\Rightarrow Consider alternative methods when dealing with rectangles e.g. $1+\mathrm{w}+1+\mathrm{w}$ or $(1+\mathrm{w}) \times 2$
\Rightarrow Use perimeter and labelled sides to work out unknown lengths.
Calculate and compare the area of rectangles...
\Rightarrow Recap counting squares to find the area and that area is the amount of space a shape covers and is measured in squared units (cm 2 and m 2)
\Rightarrow Use a formula to calculate the area: area $=1 \times \mathrm{w}$
\Rightarrow Estimate areas of rectangles, calculate and compare / order
\Rightarrow Is a square a rectangle? How should we calculate its area?
\Rightarrow Can we use Area $=1 \times \mathrm{w}$ for any shape?
\Rightarrow Calculate area of compound shapes - split into 2 separate rectangles
\Rightarrow Split compound shapes in different ways and calculate areas
\Rightarrow Find area of a compound shape by making it a complete rectangle and using subtraction of area of added piece
\Rightarrow Find area of irregular shapes by counting squares - identify whole and part squares; find 2 parts that can make an approximate whole.

Estimate volume and capacity..

\Rightarrow Understand that volume is the amount of solid space something takes up
\Rightarrow Use cm cubes to make solid shapes \& relate to the units for volume - cm3
\Rightarrow Make different shapes with the same volume and discuss how the volume is the same / still takes up the same amount of space
\Rightarrow Compare and order different solids that are made of cubes
\Rightarrow Begin to calculate volume without counting cubes
\Rightarrow Identify how volume and capacity differ
\Rightarrow Estimate, measure and compare both volumes and capacities \Rightarrow Explore how containers can be different shapes but still hold the same capacity.

- 'To convert $\mathrm{km} / \mathrm{kg} / \mathrm{l}$ to $\mathrm{m} / \mathrm{g} / \mathrm{ml}$ multiply by 1000 .
- To convert m/g / ml to km / kg /l divide by 1000 .'
- 'To convert cm to m divide by 100 .
- 'To convert m to cm multiply by 100.
- ' 1 inch is approximately 2.5 cm .'
- ' 1 kg is approximately 2 pounds.'
- ' 1 pint is approximately $1 / 2$ a litre.'
- Perimeter is the distance around the outside of a 2D shape.'
- 'Area is the amount of space a shape covers and is measured in squared units.'
- 'Capacity is the amount a container or object can hold.'
- 'Volume is the amount of solid space occupied by an object.'
- Mass
- Weight
- Scale
- Length
- Volume
- Capacity
- Perimeter
- Increments/divisions.
a.m. •.m.
- Distance
- Area
- Analogue • Digital Standard units • Nonstandard units
- Regular / irregular
- Rectilinear / compound shapes
- Approximate
- Inches, pints, pounds

COMMON MISCONCEPTIONS

- Not knowing the difference between perimeter and area.
- Not knowing the difference between volume and capacity.
- Thinking that $100 \mathrm{~g}=1 \mathrm{~kg}$ and $100 \mathrm{~m}=1 \mathrm{~km}$ or $1000 \mathrm{~cm}=1 \mathrm{~m}$
- Difficulties converting between minutes and hours e.g. 0.75 hours $=75$ minutes
- Believing time is a decimal and using the column method to calculate differences in time

Key Vocabulary

\Rightarrow Capacity -the amount a container or object can hold, (measured in ml / I).
\Rightarrow Volume- amount of solid space occupied by an object (measured in cm^{3}).
\Rightarrow Perimeter-the distance around the outside of a 2D shape.
\Rightarrow Area-the amount of space a shape covers

Key Objectives

- Identify 3D shapes, including cubes and cuboids from 2D representations.
- Use the properties of rectangles to deduce related facts and find missing lengths and angles.
- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.
- Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.
- Know that angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.
- Draw given angles and measure them in degrees.
- Identify:
* angles at a point and one whole turn -360°
* angles at a point on a straight line and $1 / 2$ a turn;
* other multiples of 90°.
- Identify acute and obtuse angles and compare and order angles up to two right angles by size.
- Identify, describe and represent the position of a shape following a reflection or translation using the appropriate language and know that the shape has not changed.
- Describe positions on a 2D grid as coordinates in the first quadrant.
- Plot specified points and draw sides to complete a given polygon.
- Describe movements between positions as translations of a given unit to the left/right and up/down.

Possible Teaching Sequence

Identify 3D shapes...
\Rightarrow Know terminology associated with 3D shapes e.g. faces, edges, vertices, base, parallel faces.
\Rightarrow Identify how 3D shapes are constructed from faces consisting of 2D shapes.
\Rightarrow Recognise specific features of 3D shapes from different representations, including 2D images.
Know angles... Draw given angles...
\Rightarrow Building on acute and obtuse (Y4) identify angles that are greater than 180° and associate with terminology.
\Rightarrow Recognise angles within a range of representations (e.g. irregular shapes) and state whether they are acute, obtuse or reflex.
\Rightarrow Know angles are measured in degrees and how to use a protractor.
\Rightarrow Estimate the size of and measure angles, including reflex, in a range of representations using angle knowledge to justify their answers.

Identify angles...

\Rightarrow Building on knowledge from Y 3 of turns and right angles, recognise a quarter turn as 90°, a $1 / 2$ turn as 180° (straight line), a $3 / 4$ turn as 270° and a full turn as 360°

Use the properties...

Children should use the idea that they can form another square within the rectangle to determine that angle ? is $1 / 2$ a right angle and use ideas such as parallel sides in rectangles are equal lengths to determine the length of the missing side.

Identify, describe and represent...

\Rightarrow Know that the concept of translate is to move.
\Rightarrow Calculate how many units a vertex has been translated by.
\Rightarrow Translate each vertex and join to complete a shape.
\Rightarrow Building on Y 4 , reflect shapes within 1 quadrant and write new coordinates

Stem Sentences
 Key Terminology

- 'A reflex angles is greater than 180° but less than 360°.
- 'When we read coordinates, we read x then y .'
- 'Parallel lines are lines that never meet and are an equal distance apart.'
- 'Perpendicular lines meet at a right angle.'
- 'To translate a shape, count the jumps.'
- Acute
- Obtuse
- Regular
- Irregular
- Polygon
- Vertices
- Faces
- Base
- Edges
- Reflection
- Translation
- Parallel
- Protractor
- Perpendicular
- Diagonal
- coordinate

COMMON MISCONCEPTIONS

- Not counting hidden vertices, faces and edges on a 2D representation of a 3D shape.
- Reading the wrong scale when measuring angles
- Measuring acute angle instead of reflex e.g.
- Not recognising reflex angles within
irregular shapes e.g.

Key Vocabulary

Counting squares not jumps when translating

- Translating, instead of flipping a shape around a mirror line.
\Rightarrow Prism - a 3D shape with two parallel faces that are the same 2D shape. All the other faces are rectangles.
\Rightarrow Pyramid-a 3D shape with triangular sides that meet at point. The base is a 2 D shape.
\Rightarrow Regular - a shape with all sides and angles equal
\Rightarrow Irregular - a shape where sides and angles are different sizes and lengths.
- Solve comparison, sum and difference problems using information presented in a line graph.
- Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
- Interpret and present discrete and continuous data using appropriate graphical methods including bar charts and time graphs.
- Complete, read and interpret information in tables, including timetables.

Possible Teaching Sequence

\Rightarrow Solve comparison, sum and difference problems..

\Rightarrow Reading between intervals, giving an estimate of the value that is represented
\Rightarrow Use ruler to support reading of axes
\Rightarrow Writing a story to explain what is happening in a line graph
\Rightarrow Draw axis with different scales, understanding which multiples are most appropriate for labelling intervals on axes and impact on accuracy
\Rightarrow Collect own data to represent in line graphs. Links to science e.g. measuring shadows over time, melting and dissolving substances or plant growth
\Rightarrow Solving comparison, sum and difference problems:
\Rightarrow Determine highest and lowest values
\Rightarrow Calculate differences between highest and lowest values
\Rightarrow Calculate length of time taken for a certain event
\Rightarrow Generate own questions.
Complete, read and interpret information in tables...
\Rightarrow Interpret discrete data from a table
\Rightarrow Collect, present and interpret own information
\Rightarrow Read and interpret two way tables
\Rightarrow Complete missing information on a two way table
\Rightarrow Extract information from a timetable.

Common Misconceptions

Key Vocabulary

- Mixing up the x and y axis.
- Uneven intervals when drawing their own graphs.
- Plotting information on the graph incorrectly.
- Believing that the larger durations of time on a timetable equate to the fastest.
- When reading two way tables, pupils might just look at either the row or column but not both
- When solving questions on a two way table about bus/train times they may use column subtraction/addition to get a time instead of a number line.

Stem Sentences

Key Terminology

- 'What does the x axis represent? The x axis represents...'
- 'What does the y axis represent? The y axis represents...'
- 'X runs along the bottom, y goes up the side.'
- Interpret
- Represent
- Scale
- Data
- Intervals
- Table
- Timetable
- Interval
- Axis
- Multiples
- Constant rate
- Two way table
\Rightarrow Interval- between 2 points or values.
\Rightarrow Scale-a series of marks equally spaced apart on an axis.
\Rightarrow Discrete- data that has a finite value and does not change e.g. the number of people in each group in a completed survey.
\Rightarrow Continuous- data that is continually changing as it is measured over time e.g. the temperature over a year.
\Rightarrow Line graph- uses lines to join points that represent data.

Problem-solving And reasoning should be Applied throughout all teaching not just within isolated lessons.

PROBLEM-SOLVING AND REASONING.

PROBLEM-SOLVING AND REASONING EXAMPLES FOR YEAR 5

The following strategies are a very powerful way of developing pupils' problem-solving and reasoning skills and can be used flexibly across all strands of maths.

Spot the mistake/Which is different?
True or false?
What comes next?
Do, then explain.
Make up an example/Write more statements/ Create a question/Another and another.
Possible answers/other possibilities.
Missing numbers/Missing symbols/Missing information.
Working backwards/Use of inverse/Undoing/ Unpicking.

- Hard and easy questions/Order from easiest to hardest.
What else do you know?/Use a fact.
Fact families.
Convince me/Prove it/Generalising/Explain thinking
Connected calculations.
Make an estimate/Size of an answer.
Always, sometimes, never.
Making links/Application.
Can you find?
Odd one out.
Complete/continue the pattern.
Ordering.
The answer is...
Visualising
Answer free zone.
Justify.

Addition \& Subtraction
Complete the pyramid using addition and subtraction.
What could the start and end numbers be?

Multiplication \& Division

I know... so...

$$
24 \times 18=432
$$

$25 \times 18=$ \qquad
$25 \times 17=$ \qquad

Geometry-Position \& Direction
These coordinates have all been translated in the same way. Can you work out the missing ones?

Measures
Act the graph
Suppitie Shown by Focial Expression

True or false?
$1 \cdot 5 \mathrm{~kg}+600 \mathrm{~g}=2 \cdot 1 \mathrm{~kg}+300 \mathrm{~g}$
$32 \mathrm{~cm}+1.05 \mathrm{~m}=150 \mathrm{~cm}-0.13 \mathrm{~m}$
$3 / 4 l+0.05 l=$ half of 1.6ℓ
Explain your reasoning.

